Nuclear Magnetic Resonance Gyroscopes for Precise Positioning

<u>Riccardo Cipolletti^{1,2}</u>; Janine Riedrich-Möller¹; Robert Rölver¹; Tino Fuchs¹ Arne Wickenbrock² and Dmitry Budker² ¹Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Advanced Technologies and Micro Systems ²Helmholtz-Insitut Mainz, Johannes Gutenberg-Universität Mainz

Abstract:

Precise positioning of vehicles is essential for modern mobility solutions. In the case when GPS signals and other systems are temporarily unavailable, high performance inertial sensors become a key component of navigation systems that widely use dead reckoning i.e. localization based on a previously determined position and precise directional sensor signals, including rotation and acceleration.

Nuclear Magnetic Resonance (NMR) based gyroscopes enable high precision measurement of rotation rates — with a high potential of miniaturization. We present modelling of a Xenon and Rubidium based NMR gyroscope for parameter studies.

NMR Gyroscopes: Working Principle

Working Principle Scheme:

Rubidium () and Xenon () magnetic moments.

Static () and oscillating () magnetic fields.

Lasers () with positive propagation direction.

Linear and circular polarization ().

Global magnetization of the cell is illustrated in the coordinate representation.

Previous work [1] measuring a shift in the measured frequency of Xenon Larmor-precession due to rotation, with an in-situ Rubidium magnetometer has shown an angular random walk of $0.005^{\circ}/\sqrt{h}$ and a bias drift of $0.02^{\circ}/h$.

Larmor-Precession

Spin Exchange Optical Pumping

Resonant Driving

Parametric Modulation and Optical Rotation Detection

T.G. Walker and M.S. Larsen: Spin-Exchange Pumped NMR Gyros, Adv. Atom. Mol. Opt. Phys. 65, 373-401 (2016)

Modelling with MATLAB and Simulink

Optical Rotation Detection

- Numerical solution of the Optical Bloch equations for arbitrary fields
- No steady state approximation
- Feedback of the alkali field.
- Simulation for arbitrary system parameters

Results and Conclusions

Precession signals that agree with the analytical steady state solution:

Adding interaction terms e.g. due to the alkali field:

Functional reconstruction of applied rotation rates:

BOSCH Invented for life

The Gyroscope Signal (Red) reconstructs an applied Rotation Rate (yellow). Blue shows the non-integrated feedback of a Phase Locked Loop.

Outlook:

- Parameter studies
- Optimized control and read-out

