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Motivation

• Targeted application: Breath gas analysis

• Why nitric oxide?

➢ Signaling inflammatory diseases

➢ Blood pressure regulation

➢ Immune system

• Human and other specimen

➢
1Humans exhale between 1-2000 ppb

➢ Large gas volumes needed

https://www.gas-dortmund.de/index-gas.php?lan=1&spath=420, 04.03.2019 

https://biox.stanford.edu/highlight/toenail-trim-saves-lab-mice-common-life-

threatening-skin-condition, 04.03.2019

1M. Jorissen et al., Allergy 56, 1026 (2001)
American Journal of Respiratory and Critical Care Medicine 171, 912 (2005). 2



Working Principle

Figure: F. Munkes , Masterthesis, Continuous wave absorption spectroscopy on the  𝑋2Π1/2 to 

𝐴2Σ+ transition of nitric oxide, University of Stuttgart 2020

𝑈Bias
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Step One: Excitation

𝑈Bias
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Step Two: Collision

• Ionization energy1: 9.25 eV

• Rydberg states: 9.24 eV

• Additional charges due to:

➢ Photoeffect

➢ Ionization of different 
species

➢ Results in an ionization
background𝑈Bias

1A. Bernard, On the 3d Rydberg states of the NO molecule, Molecular Physics 73:1, 221-234 (1991) 5



Step Three: Detection

• Bias Voltage: 0-10 V

• Conversion: current to voltage via 
a trans-impedance amplifier

• Removal of ionization background
possible

• Comparison to optical detection1:

➢ Better signal to noise ratio

➢ Higher bandwidth

𝑈Bias

6
1D. Barredo et al., Phys. Rev. Lett 110, 123002 (2013)



Advantages of the Sensor Principle
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1

1J. Schmidt et al., Appl. Phys. Lett. 113, 011113 (2018)



• Large current: 30 nA at 0.5 mbar

• Estimated quantum efficiency 10−4 at 1 kHz bandwidth

• Measured with a rack based commercial amplifier

• Compared to proof of concept experiment1:

➢ 10 × increase for sensitivity

➢ 100 × increase in temporal resolution

Rydberg Excitation and Current Conversion
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1J. Schmidt et al., Appl. Phys. Lett. 113, 011113 (2018)



Custom Trans-Impedance Amplifier

• Individually configurable via flex PCB

• Max. config. noise floor: 0.6
fA

Hz

• Max. trans-impedance: 150 GΩ

• Theoretical detection limit: ≈ 3 ppb

• No optimized charge conversion yet

• No modulation technology employed so far
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Summary and Outlook

• Cw laser excitation converted into currents up to 30 nA at 0.5 mbar

• Estimated quantum efficiency of 10−4

• Improvements: Sensitivity × 10, temporal resolution × 100

• Replace rack based amplifier by custom made onboard amplifier

• Optimization of the charge conversion

• Measurements with gas mixtures of NO and N2
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Optogalvanic Spectroscopy – Supplemental Slides
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Optical Setup
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Groundstate Transition 𝑨𝟐𝚺+ ← 𝑿𝟐𝚷𝟑/𝟐

1C. M. Western “Pgopher: A program for simulating totational, vibrational and electronic 
spectra,” J. Quant. Spectrosc. Radiat. Transf. 186, 221-242 (2017)

• Two spin-orbit components: 
𝑋2Π1/2 and 𝑋2Π3/2

• Excitation via: 𝑃12 𝐽𝑋 = 5.5

• Verification via adjacent peak

• Simulation with pgopher1

➢ ΔSim ≈ 2𝜋 ⋅ 19.80 GHz

➢ ΔMeas ≈ 2𝜋 ⋅ 19.76 GHz
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Intermediate Transition 𝐇𝟐𝚺+ ← 𝑨𝟐𝚺+

• Adjacent states: 𝐻′2Π and 𝐻2Σ

• Excitation via: R11 𝐽𝐴 = 4.5, 𝑁𝐴 = 4

• Dipole forbidden transition 𝑠 → 𝑑

• Optically not resolvable
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