Towards an Optogalvanic Flux Sensor for Nitric Oxide Based on Rydberg Excitation

Patrick Kaspar, Fabian Munkes, Yannick Schellander, Joshua Fabian, Malte Kasten, Luana Rubino, Lea Ebel, Lars Baumgärtner, Denis Djekic, Patrick Schalberger, Holger Baur, Robert Löw, Tilman Pfau, Norbert Frühauf, Jens Anders, Edward Grant, and Harald Kübler

July 20th 2021

University of Stuttgart, 5th Institute of Physics

Motivation

- Targeted application: Breath gas analysis
- Why nitric oxide?
 - Signaling inflammatory diseases
 - Blood pressure regulation
 - Immune system
- Human and other specimen
 - ¹Humans exhale between 1-2000 ppb
 - Large gas volumes needed

https://www.gas-dortmund.de/index-gas.php?lan=1&spath=420 04.03.2019

https://biox.stanford.edu/highlight/toenail-trim-saves-lab-mice-common-life-threatening-skin-condition, 04.03.2019

¹M. Jorissen et al., *Allergy* **56**, 1026 (2001) American Journal of Respiratory and Critical Care Medicine **171**, 912 (2005).

 $A^2\Sigma^+$ transition of nitric oxide, University of Stuttgart 2020

X

Step One: Excitation

ALAAAAA

Step Two: Collision

- Ionization energy¹: 9.25 eV
- Rydberg states: 9.24 eV
- Additional charges due to:
 - > Photoeffect
 - Ionization of different species
 - Results in an ionization background

Step Three: Detection

0.1 s

500

Rydberg Excitation and Current Conversion

- Large current: 30 nA at 0.5 mbar
- Estimated quantum efficiency 10^{-4} at 1 kHz bandwidth
- Measured with a rack based commercial amplifier
- Compared to proof of concept experiment¹:
 - $> 10 \times$ increase for sensitivity
 - $> 100 \times$ increase in temporal resolution

835 nm H²Σ⁺,

> -Н' ²П

540 nm

-A ²Σ+

226 nm

Х²П_{з/2}

Custom Trans-Impedance Amplifier

- Individually configurable via flex PCB
- Max. config. noise floor: 0.6 $\frac{fA}{\sqrt{Hz}}$
- Max. trans-impedance: $150 \text{ G}\Omega$
- Theoretical detection limit: \approx 3 ppb
- No optimized charge conversion yet

Summary and Outlook

- Cw laser excitation converted into currents up to 30 nA at 0.5 mbar
- Estimated quantum efficiency of 10^{-4}
- Improvements: Sensitivity \times 10, temporal resolution \times 100
- Replace rack based amplifier by custom made onboard amplifier
- Optimization of the charge conversion

Measurements with gas mixtures of NO and N₂

The QNOSEs

Optogalvanic Spectroscopy – Supplemental Slides

12

 $\overline{\Pi}$

X

¹C. M. Western "Pgopher: A program for simulating totational, vibrational and electronic spectra," *J. Quant. Spectrosc. Radiat. Transf.* **186**, 221-242 (2017)

